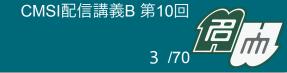
CMSI配信講義B 第10回

大規模MD並列化の技術1


名古屋大学 工学研究科

CMSI 重点研究員

安藤 嘉倫

- 分子動力学計算を例に、三次元トーラスネットワーク上での 高並列対応ソフトウェアのコーディング技術を紹介
 - → 京コンピュータ, FX10 などで有効な技術
 - → おそらく他ソフトにも有効な技術. 講義内容にインスパイアされた コードを自作, 公表した場合は文献[1]を引用下さい.
- MODYLAS^[1]での実装例をもとに,並列 (MPI, OpenMP, SIMD) の効率化技術をメインに,演算の効率化技術について も紹介
- ・コードの詳細には極力立ち入らずコーディング概念を説明
 - \rightarrow 詳細はライセンスに同意の上 <u>www.modylas.org</u> での公開ソースコードをダウンロードして確認下さい.

- ・分子動力学 (MD) 法
- ・分子動力学計算の並列化特性
- ・並列化技術1 データ構造

第一回

- ·並列化技術 2 MPI
- 並列化技術 3 OpenMP, SIMD

分子動力学法(1) 基礎方程式

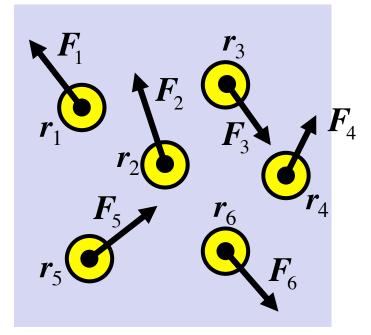
ニュートンの運動方程式

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i = -\frac{\partial}{\partial \mathbf{r}_i} \Phi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_i, \dots, \mathbf{r}_N) \qquad i = 1, \dots, N$$

時間に対する座標の二階常微分方程式

t:時刻

 r_i :原子iの座標

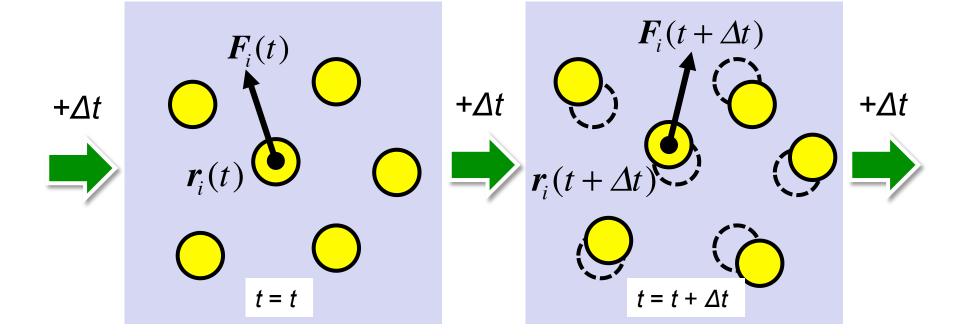

 m_i :原子iの質量

 F_i :原子iに作用する力

 $\Phi(\mathbf{r}^N)$: 系のポテンシャルエネルギー

N: 系に含まれる原子数

$$N = 6$$

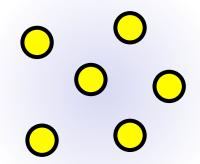


ベルレ法による差分化

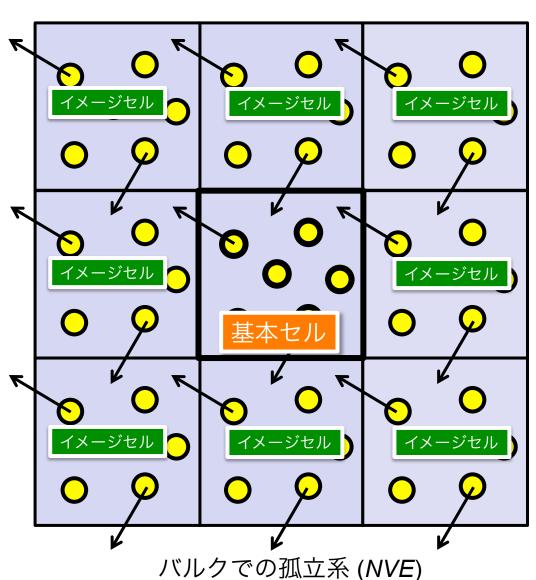
$$r_{i}(t + \Delta t) = r_{i}(t) + \frac{dr_{i}(t)}{dt}\Delta t + \frac{1}{2!}\frac{d^{2}r_{i}(t)}{dt^{2}}\Delta t^{2} + \dots = r_{i}(t) + v_{i}(t)\Delta t + \frac{1}{2!}\frac{F_{i}(t)}{m}\Delta t^{2} + \dots$$

$$+ r_{i}(t - \Delta t) = r_{i}(t) - \frac{dr_{i}(t)}{dt}\Delta t + \frac{1}{2!}\frac{d^{2}r_{i}(t)}{dt^{2}}\Delta t^{2} - \dots = r_{i}(t) - v_{i}(t)\Delta t + \frac{1}{2!}\frac{F_{i}(t)}{m}\Delta t^{2} - \dots$$
Taylor $\mathbb{E}\mathbb{H}$ - Δt

$$\mathbf{r}_i(t+\Delta t)=2\mathbf{r}_i(t)+\mathbf{r}_i(t-\Delta t)+\frac{\mathbf{F}_i(t)}{m}\Delta t^2+O(\Delta t^4)$$
 現在は「速度ベルレ法」 による差分化が標準的 ベルレの差分式



分子動力学法(3) 座標に対する境界条件



・周期境界条件

・自由境界条件

真空中での孤立系 (NVE)

分子動力学法(4) 原子間相互作用

古典分子動力学法

古典近似された原子間相互作用関数 (力場) $\Phi(r^N)$

各項は以降のスライド参照

$$\begin{split} \boldsymbol{\varPhi}(\boldsymbol{r}^{N}) &= \sum_{bonds} K_{b}(b(\boldsymbol{r_{i}},\boldsymbol{r_{j}}) - b_{0})^{2} + \sum_{angles} K_{\theta}(\theta(\boldsymbol{r_{i}},\boldsymbol{r_{j}},\boldsymbol{r_{k}}) - \theta_{0})^{2} \\ &+ \sum_{dihedrals} K_{\phi} \Big[1 + \cos(n\phi(\boldsymbol{r_{i}},\boldsymbol{r_{j}},\boldsymbol{r_{k}},\boldsymbol{r_{l}}) - \delta) \Big] + \sum_{impropers} K_{\psi}(\psi(\boldsymbol{r_{i}},\boldsymbol{r_{j}},\boldsymbol{r_{k}},\boldsymbol{r_{l}}) - \psi_{0})^{2} \\ &+ \sum_{nonbonds} \Bigg[4\varepsilon \Bigg\{ \bigg(\frac{\sigma}{r(\boldsymbol{r_{i}},\boldsymbol{r_{j}})} \bigg)^{12} - \bigg(\frac{\sigma}{r(\boldsymbol{r_{i}},\boldsymbol{r_{j}})} \bigg)^{6} \bigg\} + \frac{q_{i}q_{j}}{r(\boldsymbol{r_{i}},\boldsymbol{r_{j}})} \Bigg] \\ &\quad \text{Lennard-Jones} \quad \text{Coulomb} \end{split}$$

Coulomb

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i = -\frac{\partial}{\partial \mathbf{r}_i} \Phi(\mathbf{r}^N)$$

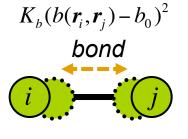
分子動力学法(4) 原子間相互作用

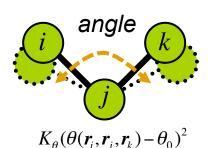
古典分子動力学法

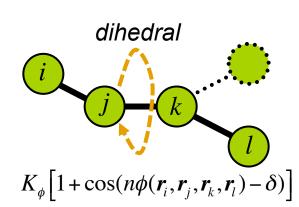
古典近似された原子間相互作用関数 (力場) $\Phi(r^N)$

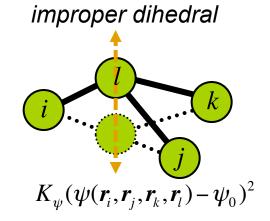
各項は以降のスライド参照

$$\Phi(\mathbf{r}^{N}) = \sum_{bonds} K_{b} (b(\mathbf{r}_{i}, \mathbf{r}_{j}) - b_{0})^{2} + \sum_{angles} K_{\theta} (\theta(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}) - \theta_{0})^{2}$$


$$+ \sum_{dihedrals} K_{\phi} \left[1 + \cos(n\phi(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}, \mathbf{r}_{l}) - \delta) \right] + \sum_{impropers} K_{\psi} (\psi(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}, \mathbf{r}_{l}) - \psi_{0})^{2}$$


$$+ \sum_{nonbonds} \left[4\varepsilon \left\{ \left(\frac{\sigma}{r(\mathbf{r}_{i}, \mathbf{r}_{j})} \right)^{12} - \left(\frac{\sigma}{r(\mathbf{r}_{i}, \mathbf{r}_{j})} \right)^{6} \right\} + \frac{q_{i}q_{j}}{r(\mathbf{r}_{i}, \mathbf{r}_{j})} \right]$$
Lennard-Jones Coulomb


分子内 (intra-molecule, bonded) 相互作用 + 分子間 (inter-molecule, nonbonded) 相互作用


分子動力学法(5) 分子内相互作用

コーディングイメージ

do n=1,nbonds

b=b(ri, rj)

 $\phi_{bond,ij}$ の計算

 $\phi_{bond} = \phi_{bond} + \phi_{bond,ij}$

Fi, Fi の計算

f(i)=f(i)+Fi

f(j)=f(j)+Fj

enddo

do n=1,nangles

theta=thteta(ri, rj, rk)

 $\phi_{angle,ijk}$ の計算

 $\phi_{angle} = \phi_{angle} + \phi_{angle,ijk}$

Fi, Fj, Fk の計算

f(i)=f(i)+Fi

f(j)=f(j)+Fj

f(k)=f(k)+Fk

enddo

do n=1,ndihedrals

phi=phi(ri, rj, rk, rl)

 $\phi_{dihedral,ij\ kl}$ の計算

 $\phi_{dihedral} = \phi_{dihedral} + \phi_{dihedral,ij}$

Fi, Fj, Fk, Fl の計算

f(i)=f(i)+Fi

f(j)=f(j)+Fj

f(k)=f(k)+Fk

f(I)=f(I)+FI

enddo

do n=1,nimpropers

psi=psi(ri, rj, rk, rl)

 $\phi_{improper,ijkl}$ の計算

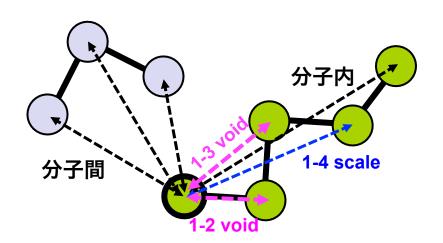
 $\phi_{improper} = \phi_{improper} + \phi_{improper,ijkl}$

Fi, Fj, Fk, Fl の計算

f(i)=f(i)+Fi

f(j)=f(j)+Fj

f(k)=f(k)+Fk


f(I)=f(I)+FI

enddo

nonbonded = Lennard-Jones(LJ) + Coulomb(CL)

$$4\varepsilon \left\{ \left(\frac{\sigma}{r(\boldsymbol{r}_i, \boldsymbol{r}_j)} \right)^{12} - \left(\frac{\sigma}{r(\boldsymbol{r}_i, \boldsymbol{r}_j)} \right)^{6} \right\} \qquad \frac{q_i q_j}{r(\boldsymbol{r}_i, \boldsymbol{r}_j)}$$

コーディングイメージ

分子間

do imol=1,nmol-1 do jmol=imol+1,nmol do i=1,natom(imol) do j=1,natom(jmol) rij=rij(ri, rj) ϕ_{ii} の計算 $\phi_{nonbond} = \phi_{nonbond} + \phi_{ij}$ Fi, Fj の計算 f(i)=f(i)+Fif(j)=f(j)+Fjenddo enddo enddo enddo

分子内

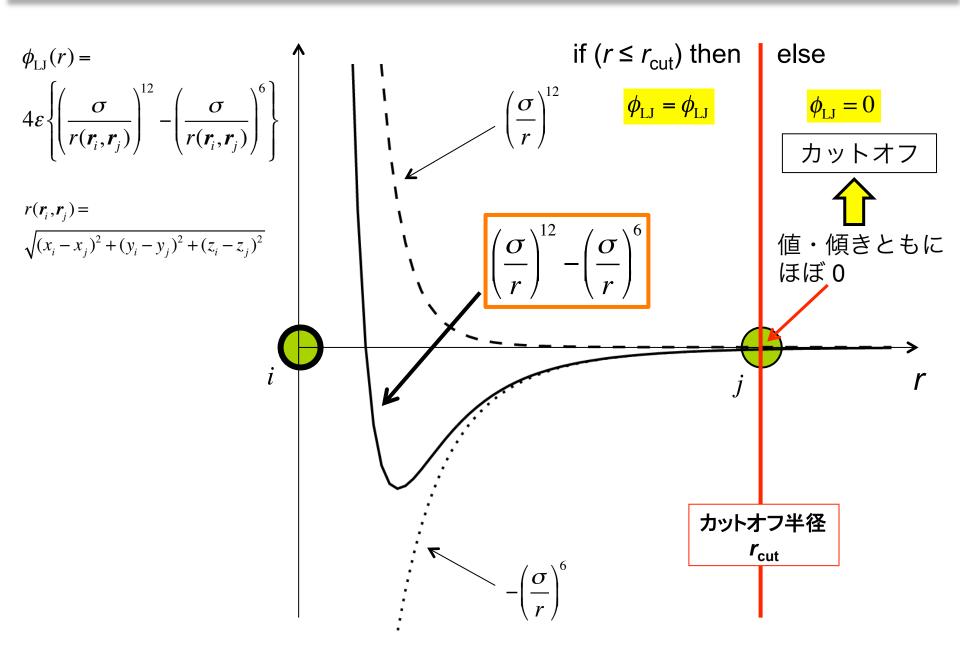
do imol=1,nmol do i=1,natom(imol)-1 do j=i+1,natom(imol) rij=rij(ri, rj) 0 if 1-2,-3 void $x = \frac{1}{3}$ s if 1-4 scale 1 else

 ϕ_{ij} の計算 $\phi_{nonbond} = \phi_{nonbond} + \mathbf{X}^* \phi_{ij}$ Fi, Fj の計算

f(i)=f(i)+x*Fi

f(i)=f(i)+x*Fi

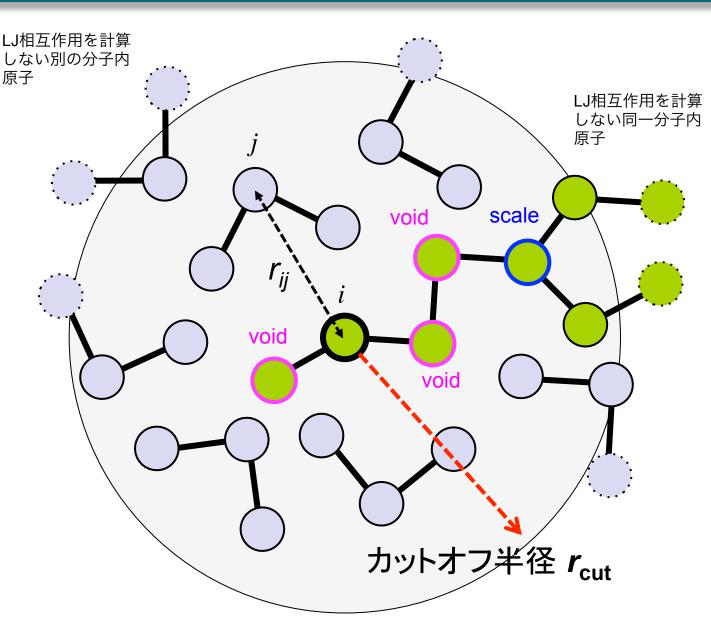
enddo enddo


enddo

分子内 nonbond 項計算の注意点:

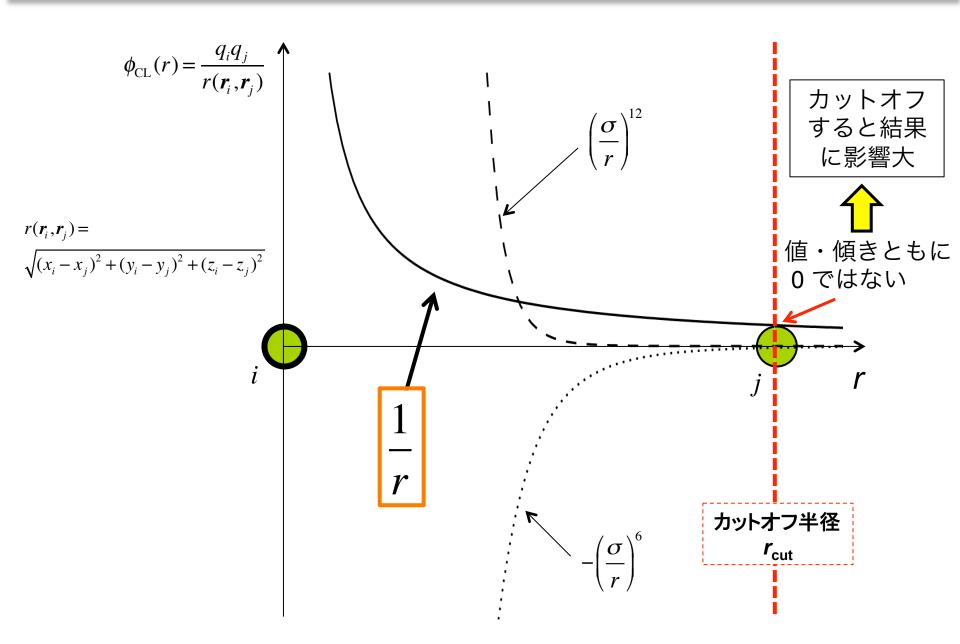
- •1番目および2番目の隣接原子とは相互作用しない (1-2, 1-3 void)
- ・3番目の隣接原子との相互作用は因子 s でスケールする (1-4 scale) [s は LJ, Coulomb べつ]
- •4番目以降の隣接原子とは通常の相互作用

分子動力学法(7) LJ相互作用のカットオフ



分子動力学法(7) LJ相互作用のカットオフ

コーディングイメージ (分子間)


do imol=1,nmol-1 do jmol=imol+1,nmol do i=1,natom(imol) do j=1,natom(jmol) rij=rij(ri, rj) if(rij > rcut) cycle ϕ_{ij} の計算 $\phi_{nonbond} = \phi_{nonbond} + \phi_{ij}$ Fi, Fj の計算 f(i)=f(i)+Fif(j)=f(j)+Fjenddo enddo

enddo enddo

13 /70

分子動力学法(8) Coulomb 相互作用

分子動力学法(8) Coulomb 相互作用

カットオフしない Coulomb 相互作用の計算法

・自由境界条件下

すべての *i*, *j* 原子対を計算

多重極展開法, および高速多重極展開法 (FMM)

·周期境界条件下

Ewald 法

Particle Mesh Ewald (PME) 法

FMM + 多重極子のEwald法

今回の講義ではこれの 並列化を説明

FMM:

分子動力学法(8) Coulomb 相互作用

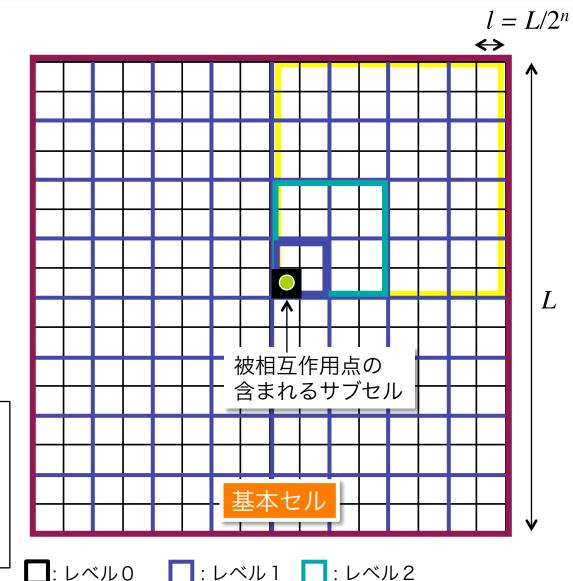
FMM での階層的セル分割

- ・基本セルは<u>立方体</u> (一辺 *L*)
- ・各辺を 2ⁿ回に等分割

本講義では簡単のためこの2つを前提

また説明の都合上,レベルの数え方を「計算科学技術特論A」(吉井)と逆に記述しているので注意.

用語の定義:


サブセル:

レベル0の分割セル (一辺 $l = L/2^n$)

スーパーセル:

レベル**m**の分割セル (一辺 *l**2^m)

系には計 8^n 個のサブセル, レベルmには 8^{n-m} 個のスーパーセル.

: レベル3 🔲: レベル4

分子動力学法(8) Coulomb 相互作用

多極子(M)

局所展開係数(L)

complex*8 wm0,wm1, wl0,wl1

FMM の主要 3 演算

allocate(wm1((nmax+1)*(nmax+1)),1,1) allocate(wl1((nmax+1)*(nmax+1)),1,1) M₂L d6 m1=1,(nmax+1)*(nmax+1)do m2=1,(nmax+1)*(nmax+1) w11(m1)=w11(m1)+m21(m2,m1)*wm1(m2)enddo enddo M₂M 点電荷 nmax: 展開次数 allocate(wm0((nmax+1)*(nmax+1)),2,2) allocate(w10((nmax+1)*(nmax+1)),2,2)

M2M: 多極子展開中心の移動, 足し合わせ

M2L:局所展開係数の計算

L2L:局所展開中心の移動, 足し合わせ

Hot spot

一つめの

Coulomb 相互作用 分子動力学法(8)

相互作用計算の要点

レベル0

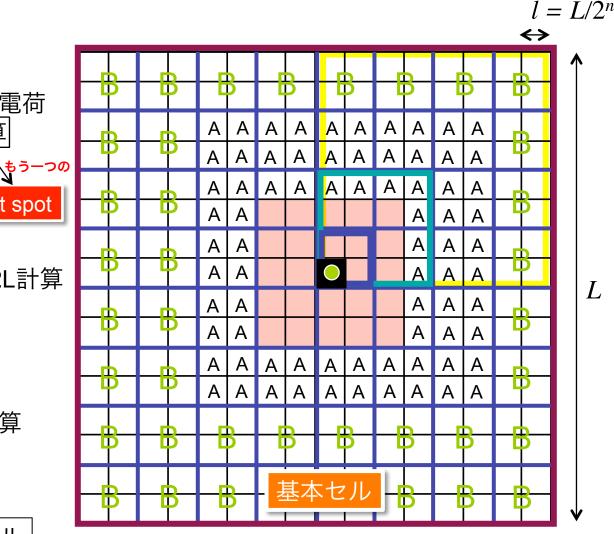
- ・近傍サブセルに含まれる点電荷 と対子-粒子相互作用を計算
- ・サブセルAとのM2L計算
- ・点電荷への局所展開

Hot spot

□: レベル0

: レベル3

<u>レベル1</u> ・スーパーセルBとのM2L, L2L計算


...以下同様 (入れ子構造)

最上レベル

・多重極子のEwald法, L2L計算

入れ子構造により,

周期境界条件下では各レベル 10³-5³ = 875 個のスーパーセル とM2L計算

: レベル1 : レベル2

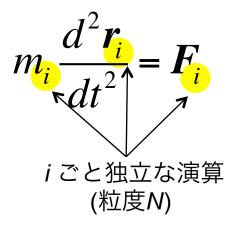
□ : レベル4 : 粒子-粒子相互作用を計算

分子動力学計算の並列化特性(1)

MD 計算の処理フロー

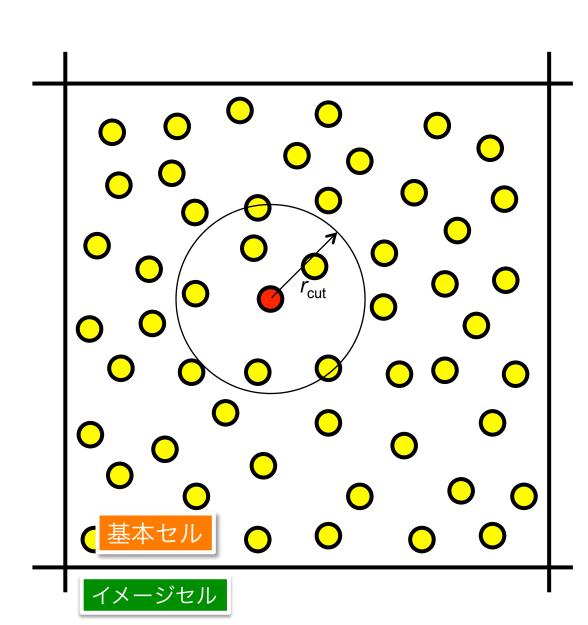

cycle

分子動力学計算の並列化特性(1)

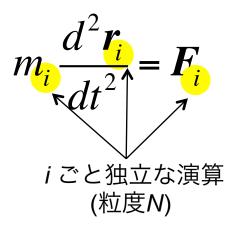

19 /70

MD 計算の処理フロー

分子動力学計算の並列化特性(2) プロセス分割 20/70

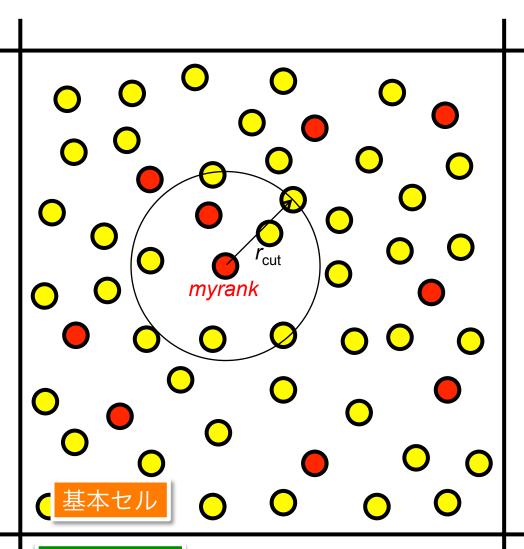


コーディングイメージ


do i=1, N ポテンシャルの計算 力の計算 座標・速度更新 力学・熱力学量計算 enddo

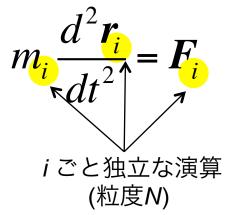
注) あくまで単純化したコーディング イメージ. 実際は i についての do ル ープは都度閉じています.

分子動力学計算の並列化特性(2) プロセス分割 21/70

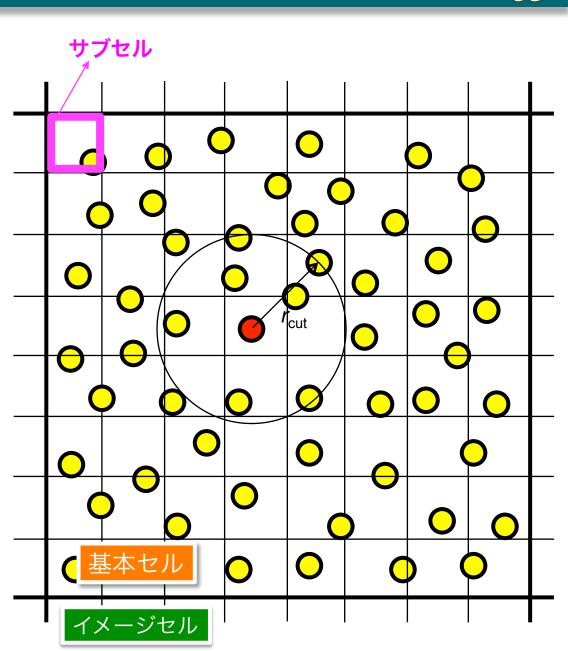


最も単純な MPI 並列化:

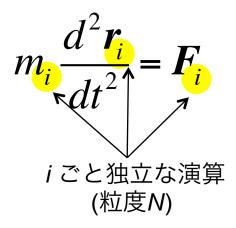
do i=1+myrank, N, nprocs ポテンシャルの計算 力の計算 call mpi_barrier 座標•速度更新 力学•熱力学量計算 enddo


myrank: MPIプロセス番号 (0始まり)

nprocs:MPIプロセス数

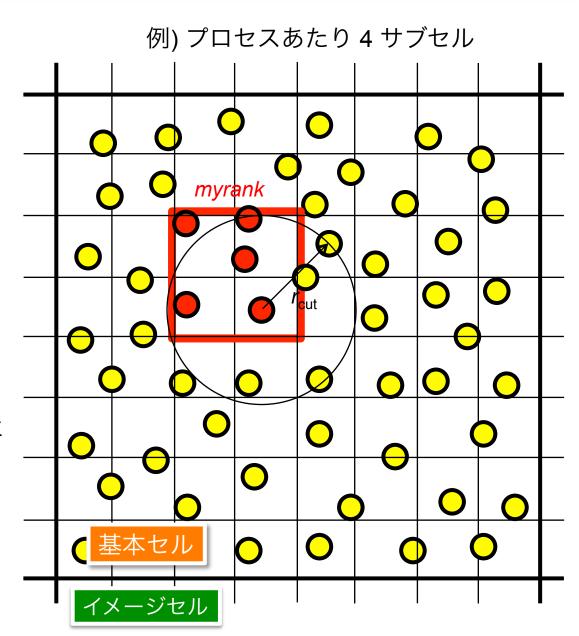

イメージセル

分子動力学計算の並列化特性(2) プロセス分割 22 /70

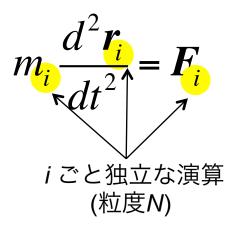


空間ドメイン分割による MPI 並列化:

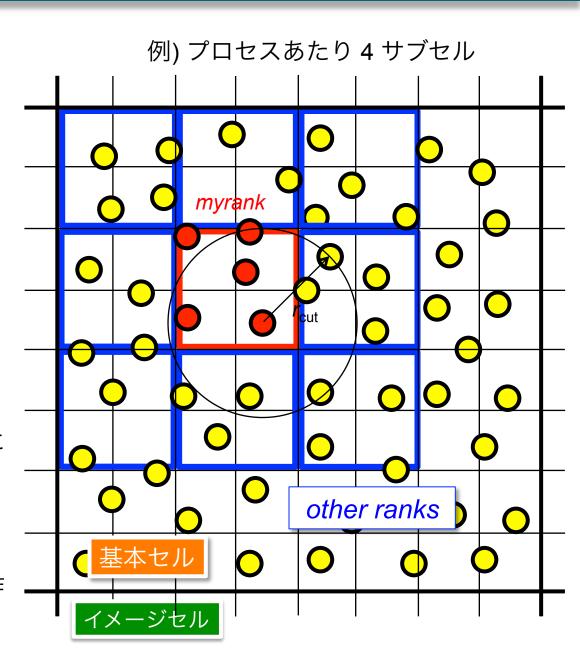
①基本セルを各辺にそって分割

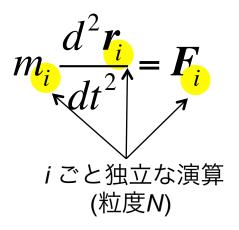


分子動力学計算の並列化特性(2) プロセス分割 23 /70


空間ドメイン分割による MPI 並列化:

- ①基本セルを各辺にそって分割
- ②複数のサブセルを各プロセスに 均等割り当て


分子動力学計算の並列化特性(2) プロセス分割 24/70


空間ドメイン分割による MPI 並列化:

- ①基本セルを各辺にそって分割
- ②複数のサブセルを各プロセスに 均等割り当て
- ③ myrank の所持するサブセル内原子と近傍 other ranks の所持するサブセル内原子との間で相互作用計算 (カットオフの場合)

分子動力学計算の並列化特性(2) プロセス分割 25/70

空間ドメイン分割による MPI 並列化:

コーディングイメージ

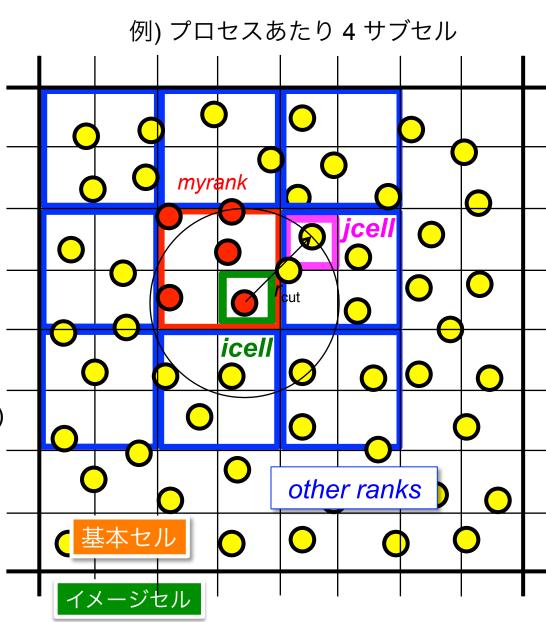
do icell(myrank)

do jcell_list(myrank or otherranks)

ポテンシャルの計算

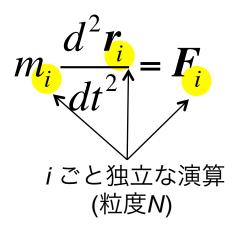
力の計算

enddo


注) 実際は icell の do ループは都度閉じて

call mpi_barrier wat.

座標•速度更新


力学•熱力学量計算

enddo

分子動力学計算の並列化特性(2) プロセス分割 26/70

空間ドメイン分割による MPI 並列化:

コーディングイメージ

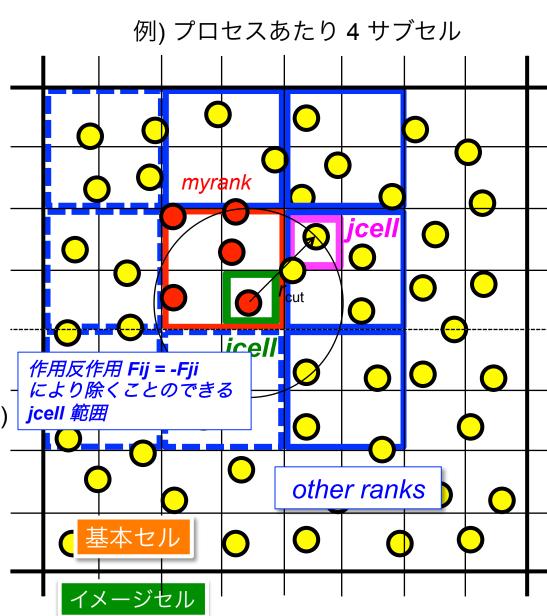
do icell(myrank)

do jcell_list(myrank or otherranks)

ポテンシャルの計算

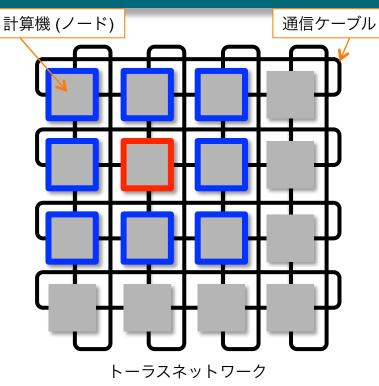
力の計算

enddo

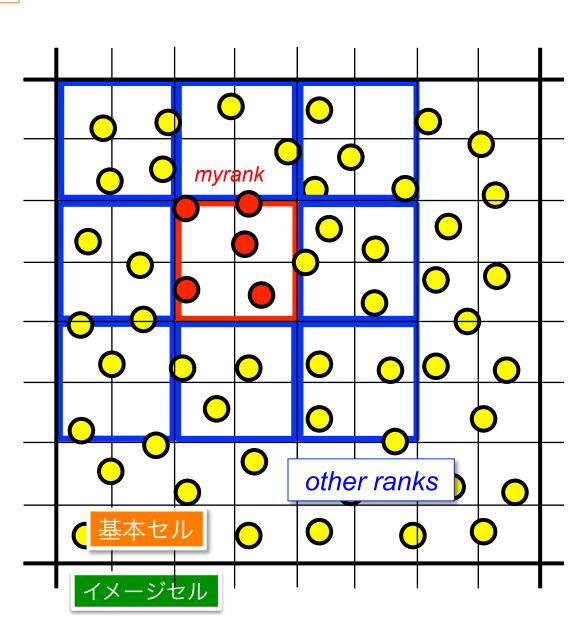

注) 実際は icell の do ループは都度閉じて

call mpi_barrier เกรร.

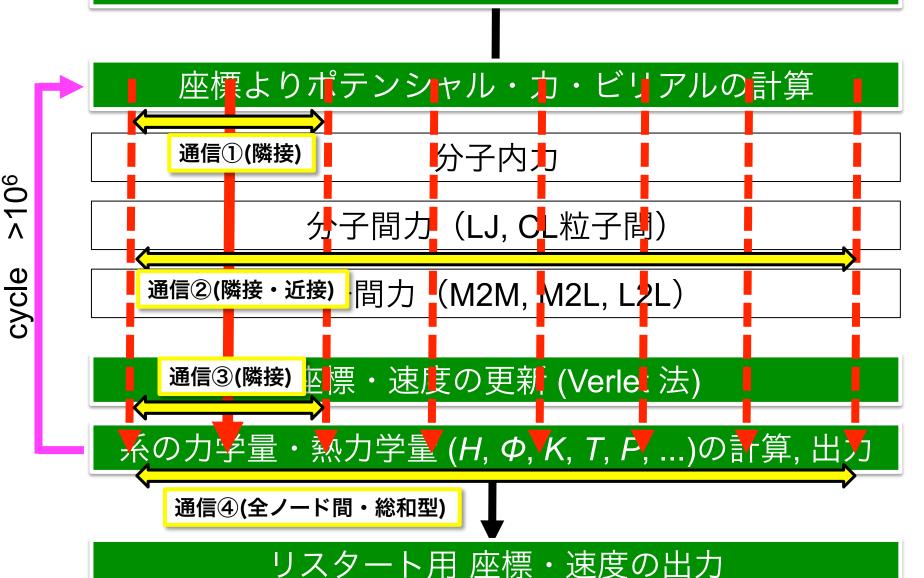
座標•速度更新


力学・熱力学量計算

enddo


分子動力学計算の並列化特性(2) プロセス分割 27 /70

空間ドメイン分割による MPI 並列化:


ノード形状とプロセス形状と を一致させることを前提に, トーラスネットワークとの相 性が非常に良い

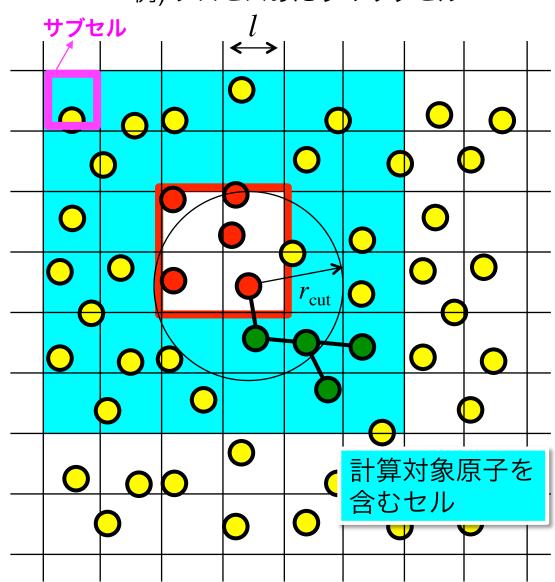
分子動力学計算の並列化特性(3) 通信パターン 28 /70

座標・速度, 力場パラメータの入力

分子動力学計算の並列化特性(3) 通信パターン 29/70

通信①(隣接)

分子内力,分子間力の計算に必要 な相手原子座標 r_i, r_k, r_l の通信.


特徴:

- ・近傍プロセスとのみ通信
- データサイズは小さい 例) 40 原子/サブセル では、 8 byte(real*8)*3(xyz)*40= 1 KB/サブセル

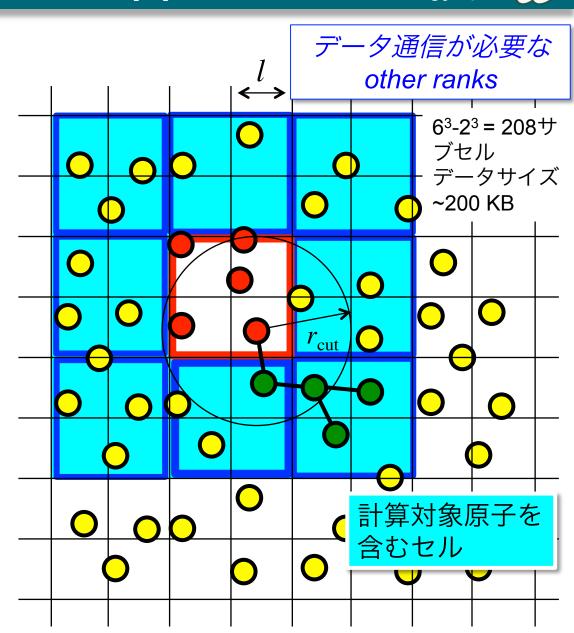
注意点:

- ・r_{cut} ≤ n*l [今回の講義では <u>n=2</u>]
- ・分子内結合原子 (特に dihedral) を通信範囲内に収める

例) プロセスあたり 4 サブセル

分子動力学計算の並列化特性(3) 通信パターン 30/70

通信①(隣接)


分子内力,分子間力の計算に必要 な相手原子座標 r_i, r_k, r_l の通信.

特徴:

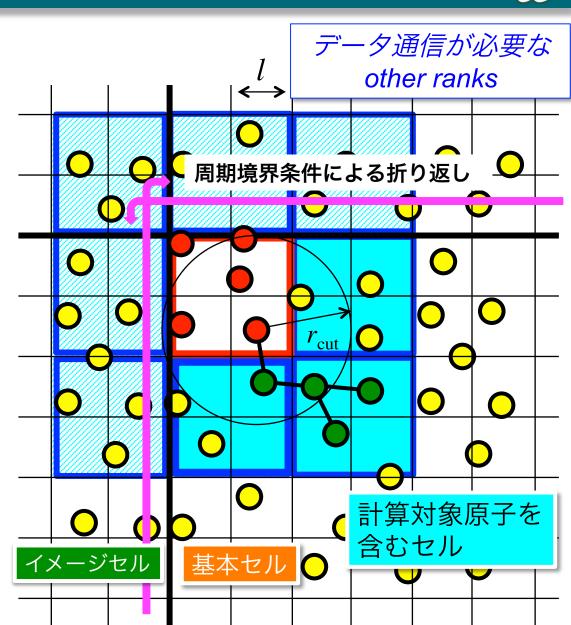
- ・近傍プロセスとのみ通信
- ・データサイズは小さい 例) 40 原子/サブセル では、 8 byte(real*8)*3(xyz)*40= 1 KB/サブセル

注意点:

- ・r_{cut} ≤ n*l [今回の講義では <u>n=2</u>]
- ・分子内結合原子 (特に dihedral) を通信範囲内に収める

分子動力学計算の並列化特性(3) 通信パターン 31/70

通信①(隣接)


分子内力,分子間力の計算に必要な相手原子座標 \mathbf{r}_i , \mathbf{r}_k , \mathbf{r}_l の通信.

特徴:

- ・近傍プロセスとのみ通信
- ・データサイズは小さい 例) 40 原子/サブセル では, 8 byte(real*8)*3(xyz)*40 = 1 KB/サブセル

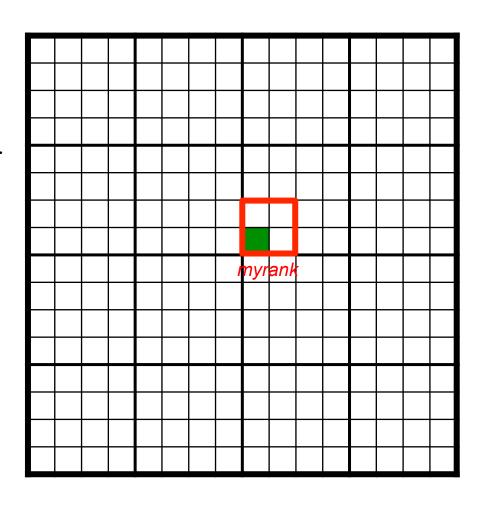
注意点:

- ・*r*_{cut} ≤ *n***l* [今回の講義では *n*=2]
- ・分子内結合原子 (特に dihedral) を通信範囲内に収める
- ・周期境界条件による折り返し

分子動力学計算の並列化特性(3) 通信パターン 32.770

レベル 0

通信②(隣接・近接)


多極子情報の通信

M2M: 周辺 8 スーパーセル

M2L: 周辺 875 スーパーセル

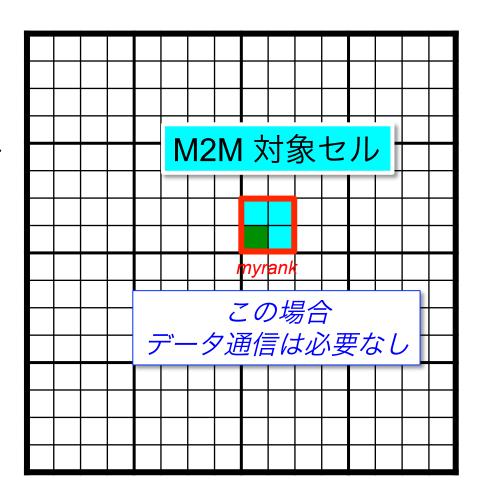
特徴:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)* $(4+1)^2$ = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

分子動力学計算の並列化特性(3) 通信パターン 33 /70

レベル 0

通信②(隣接・近接)


多極子情報の通信

M2M: 周辺 8 スーパーセル

M2L: 周辺 875 スーパーセル

特徴:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

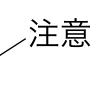
34 /70

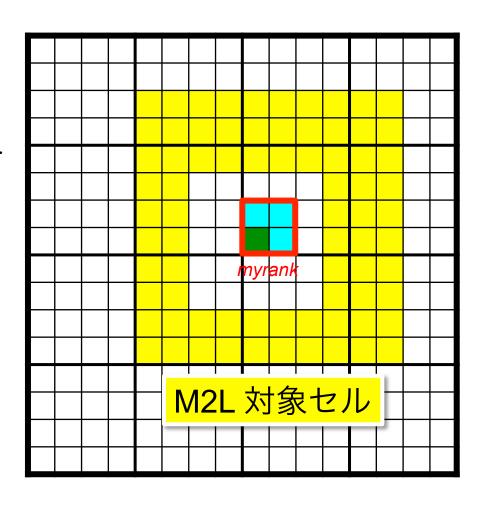
分子動力学計算の並列化特性(3) 通信パターン 34/70

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル


M2L: 周辺 875 スーパーセル


特徵:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

レベル 🛭

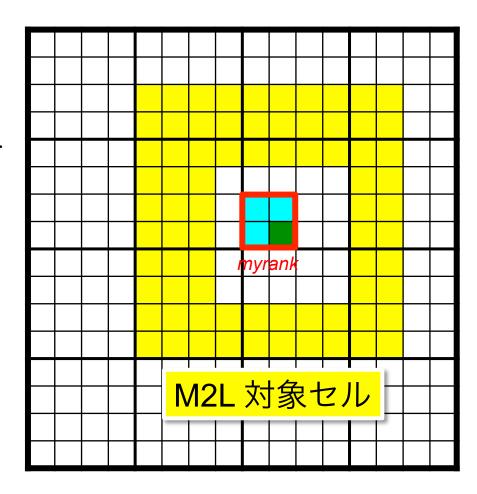
プロセス内自セル位置 ₄(0,0), (1,0), (0,1), (1,1)

分子動力学計算の並列化特性(3) 通信パターン 35 /7

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル


M2L: 周辺 875 スーパーセル

特徵:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

レベル 0

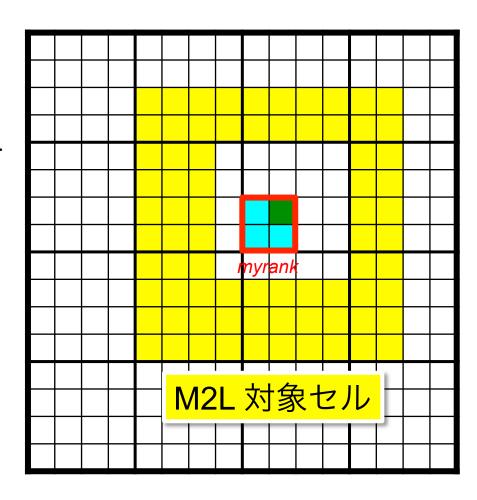
プロセス内自セル位置 (0,0), (1,0), (0,1), (1,1)

分子動力学計算の並列化特性(3) 通信パターン 36/70

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル


M2L: 周辺 875 スーパーセル

特徵:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

レベル 🛭

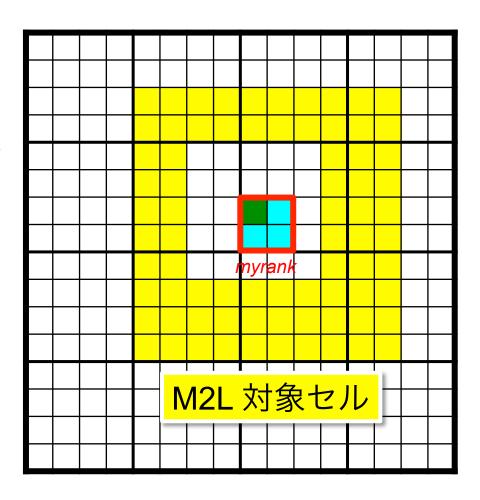
プロセス内自セル位置 (0,0), (1,0), (0,1), (1,1)

分子動力学計算の並列化特性(3) 通信パターン 37 /70

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル


M2L: 周辺 875 スーパーセル

特徵:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

レベル 0

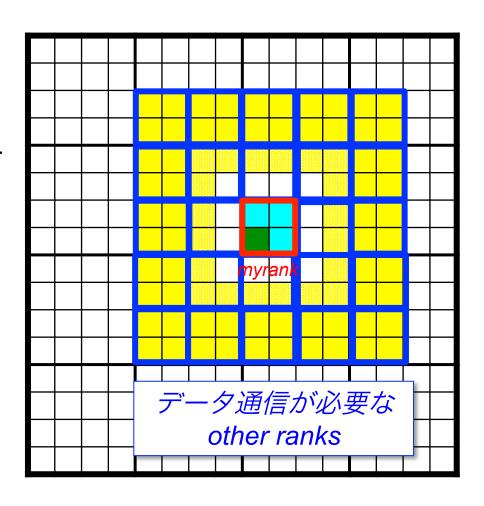
プロセス内自セル位置 (0,0), (1,0), (0,1), (1,1)

分子動力学計算の並列化特性(3) 通信パターン 38/7

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル


M2L: 周辺 875 スーパーセル

特徵:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

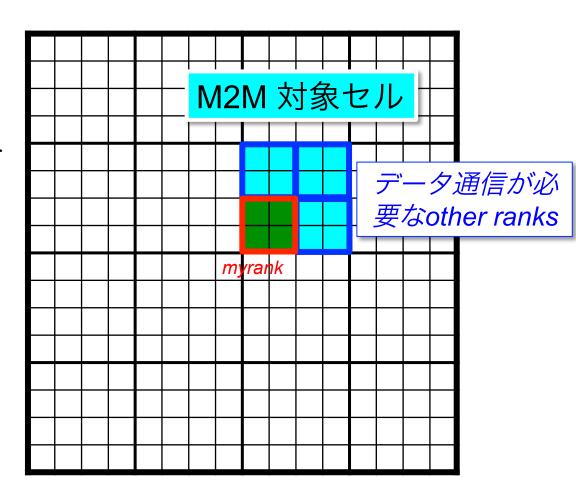
レベル 0

プロセス内自セル位置 (0,0), (1,0), (0,1), (1,1)

分子動力学計算の並列化特性(3) 通信パターン 39/70

レベル 1

通信②(隣接・近接)


多極子情報の通信

M2M: 周辺 8 スーパーセル

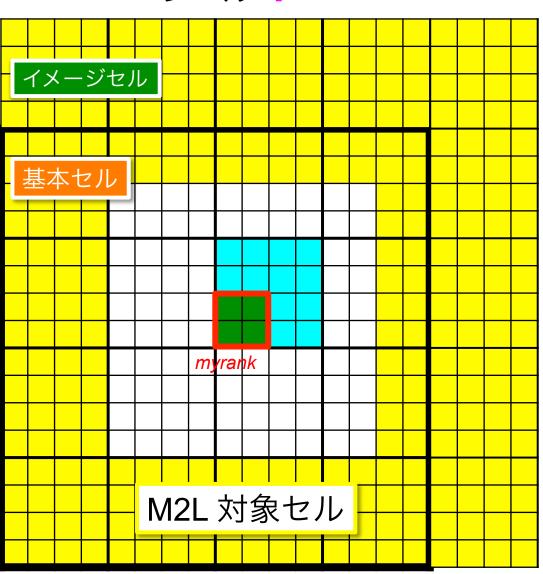
M2L: 周辺 875 スーパーセル

特徴:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)* $(4+1)^2$ = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

分子動力学計算の並列化特性(3) 通信パターン 40 /70

通信②(隣接・近接)


多極子情報の通信

M2M: 周辺 8 スーパーセル

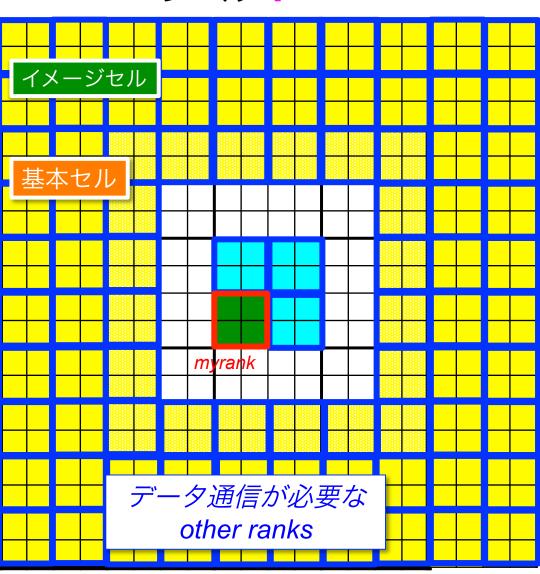
M2L: 周辺 875 スーパーセル

特徴:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)* $(4+1)^2$ = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

分子動力学計算の並列化特性(3) 通信パターン 41/70

通信②(隣接・近接)


多極子情報の通信

M2M: 周辺 8 スーパーセル

M2L: 周辺 875 スーパーセル

特徵:

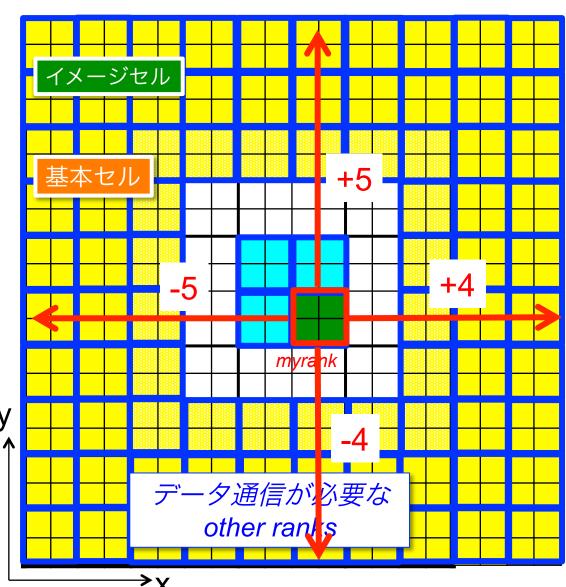
- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

分子動力学計算の並列化特性(3) 通信パターン 42 /7

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル


M2L: 周辺 875 スーパーセル

特徵:

- ・通信対象範囲が階層ごと異なる. 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

注意点 (上位階層):

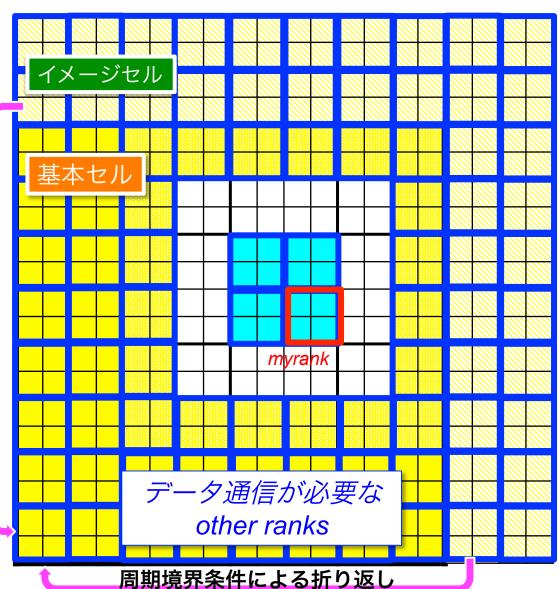
・軸ごとrank参照範囲が異なる 右の例では, x方向 -5 ~ +4 v方向 -4 ~ +5

分子動力学計算の並列化特性(3) 通信パターン 43 /7

通信②(隣接・近接)

多極子情報の通信

M2M: 周辺 8 スーパーセル

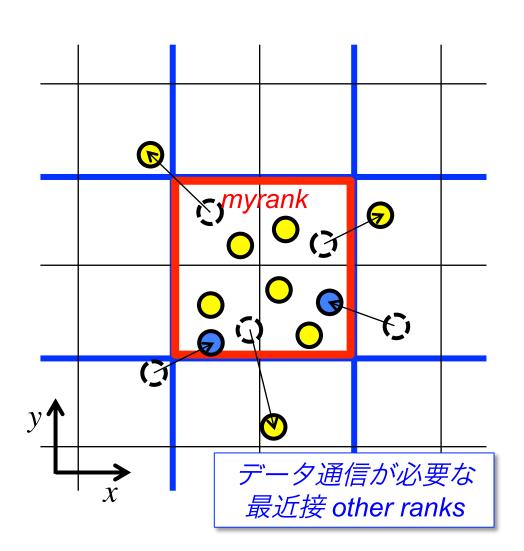

M2L: 周辺 875 スーパーセル

特徵:

- ・通信対象範囲が階層ごと異なる 上位階層ほど遠方.
- ・データサイズ 例) nmax=4 では 16 byte(complex*8)*(4+1)² = 0.4 KB/スーパーセル 階層ごと875*0.4KB=320KB

注意点:

- ・軸ごとrank参照範囲が異なる
- ・周期境界条件による折り返し


分子動力学計算の並列化特性(3) 通信パターン 44/

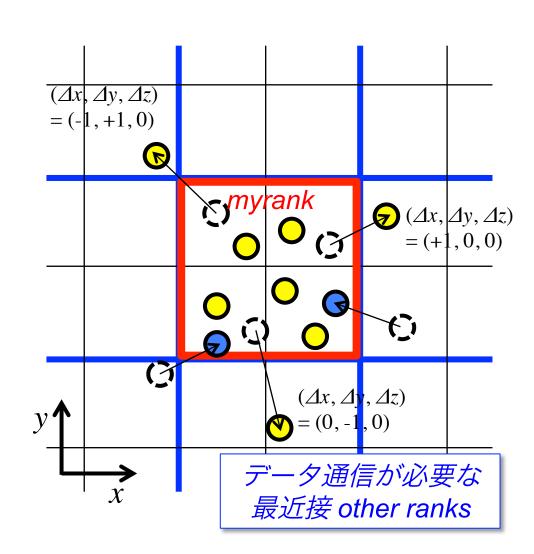
通信③(隣接)

運動方程式の数値積分の結果,原子 が移動. これを各プロセスに再帰属 させるための座標通信.

特徴:

- ・最近接 3³-1=26 プロセスと通信
- ・データサイズは非常に小さい
- ・myrank から出る粒子, myrank に 入ってくる粒子,両方ある

通信③(隣接)


運動方程式の数値積分の結果,原子が移動.これを各プロセスに再帰属させるための座標通信.

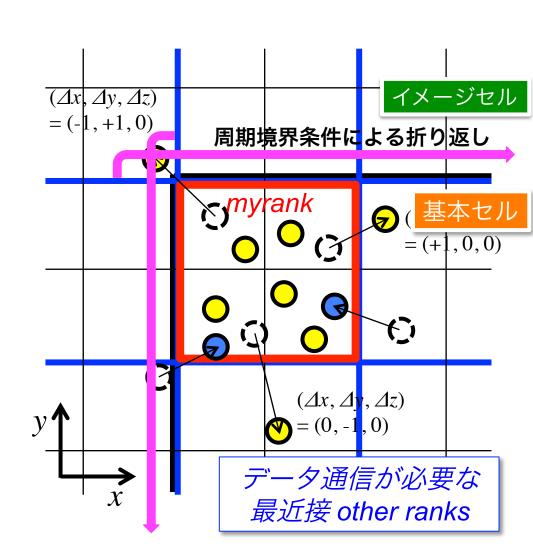
特徴:

- ・最近接 3³-1=26 プロセスと通信
- ・データサイズは非常に小さい
- ・myrank から出る粒子, myrank に 入ってくる粒子, 両方ある

注意点:

・x, y, z 軸方向への移動に加え, 斜め方向への移動が発生

通信③(隣接)


運動方程式の数値積分の結果,原子が移動.これを各プロセスに再帰属させるための座標通信.

特徴:

- ・最近接 3³-1=26 プロセスと通信
- ・データサイズは非常に小さい
- ・myrank から出る粒子, myrank に 入ってくる粒子, 両方ある

注意点:

- ・x, y, z 軸方向への移動に加え, 斜め方向への移動が発生
- ・周期境界条件による折り返し

分子動力学計算の並列化特性(3) 通信パターン 4

通信④(全ノード間・総和型)

系全体での量(ハミルトニアン, 温度, 圧力 など)を計算するための通信

特徵:

- ・データサイズは, real*8 の 1 変数
- ・全プロセス間で総和をとる (allreduce)

→ハードウェア機能の利用で高速化

例えば, 京の TBI (Tofu barrier interface)

~10,000ノード reduce 演算 10 µs 安島ら, FUJITSU. 63, 3, p. 260-264(05, 2012) 例) 運動エネルギー

$$K = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 = \sum_{k=1}^{nprocs} \sum_{i=1}^{N_k} \frac{1}{2} m_i v_i^2$$
 kene プロセスごとの和 wk_kene

call mpi_allreduce(wk_kene,kene,1, mpi_double_precision,mpi_sum, mpi_comm_world,ierr)

分子動力学計算の並列化特性(3) 通信パターン 48

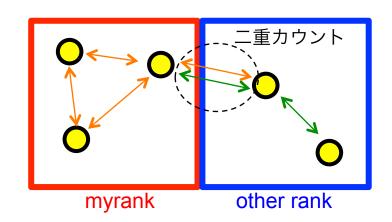
通信④(全ノード間・総和型)

系全体での量(ハミルトニアン,温度,圧力 など)を計算するための通信

特徴:

- ・データサイズは, real*8 の 1 変数
- ・全プロセス間で総和をとる (allreduce)

→ハードウェア機能の利用で高速化


例えば, 京の TBI (Tofu barrier interface) ~10,000ノード reduce 演算 10 us 安島ら, FUJITSU. 63, 3, p. 260-264(05, 2012)

注意点:

・rank 間での二重カウント 特にポテンシャルエネルギーとビリアル 例) 運動エネルギー

$$K = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 = \sum_{k=1}^{nprocs} \sum_{i=1}^{N_k} \frac{1}{2} m_i v_i^2$$
 kene プロセスごとの和 wk_kene

call mpi_allreduce(wk_kene,kene,1, mpi double precision, mpi sum, mpi_comm_world,ierr)

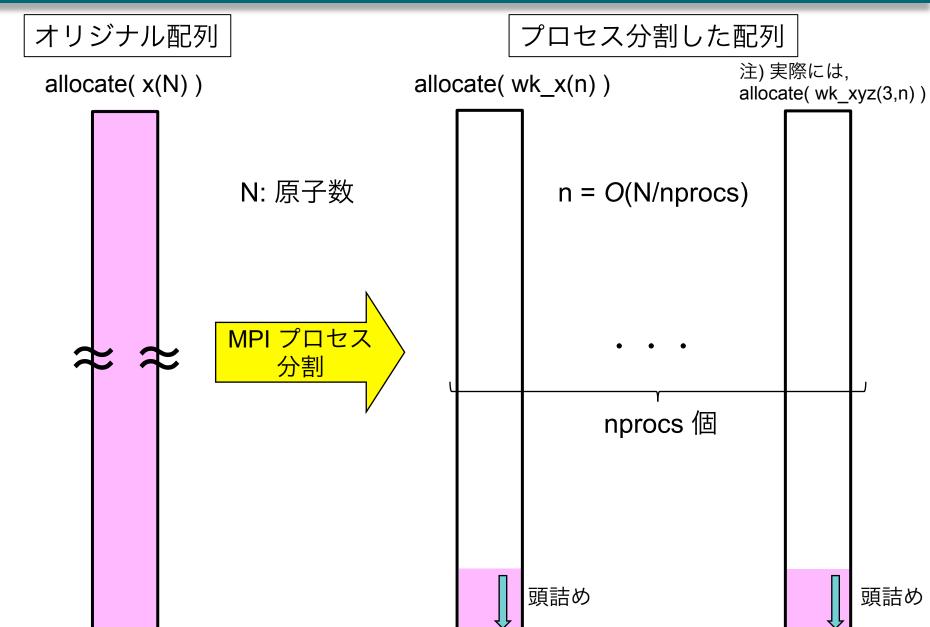
- ・分子動力学 (MD) 法
- ・分子動力学計算の並列化特性
- ・並列化技術1 データ構造

第一回

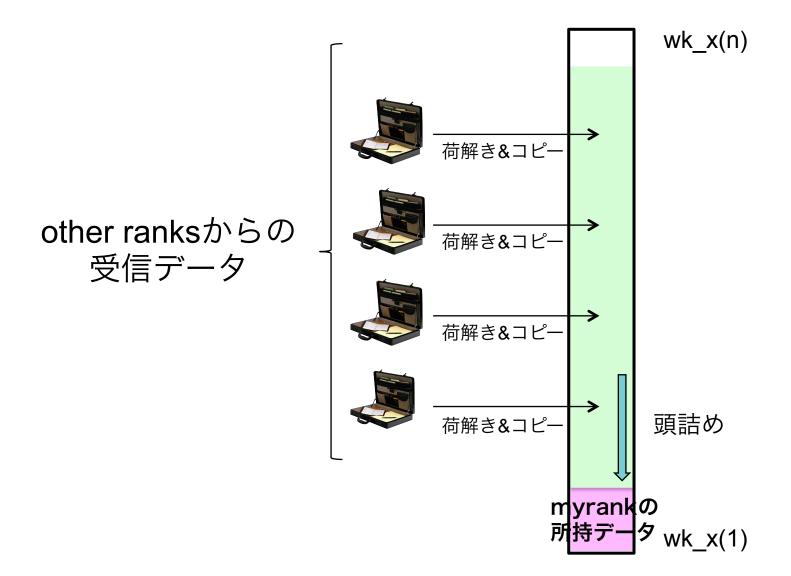
- ·並列化技術 2 MPI
- 並列化技術 3 OpenMP, SIMD

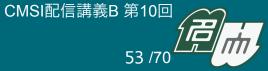
MPI 並列化技術: データ構造

データ構造: MPI 並列性能 (および演算性能) に直結


MD 計算のように 1 サイクル当たりの経過時間が小さい [≤ *O*(10⁻³ sec)] 場合に特に重要.

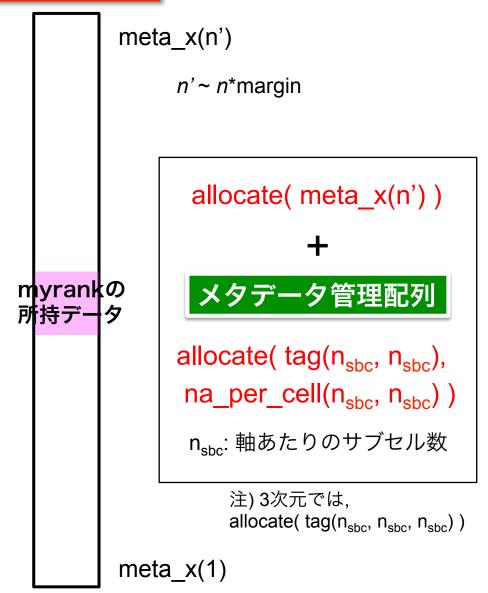
システムが大規模・複雑化する将来, アプリによらず重要になる (?).

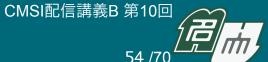

[理想] プログラムを書く前に, ネットワーク構造に最適なデータ構造を考案する [現実] 途中で問題に直面して, 既存のプログラムをイチから書き直す

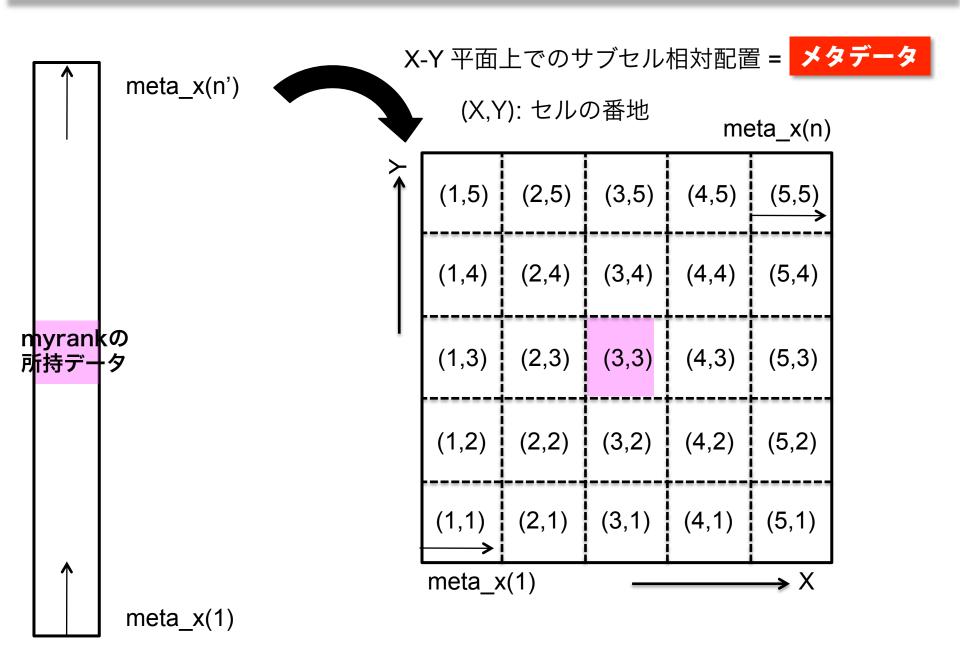


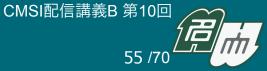
転送された座標データの格納形態

新しく考案した座標のデータ構造: メタデータ構造

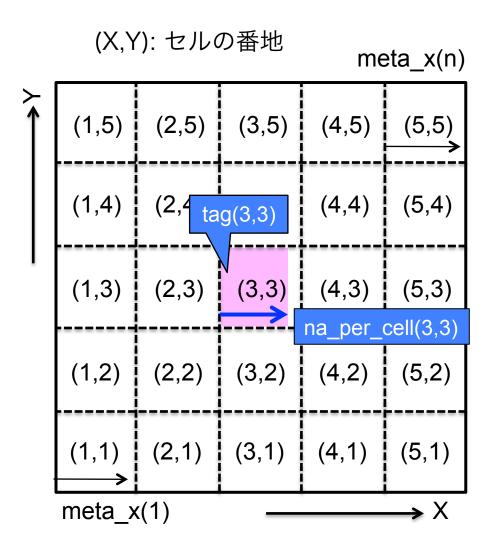

メタデータ:あるデータのための 情報を持ったデータ


ここでは,


あるデータ: 原子座標


情報:原子の所属するサブセルの

相対的な空間配置

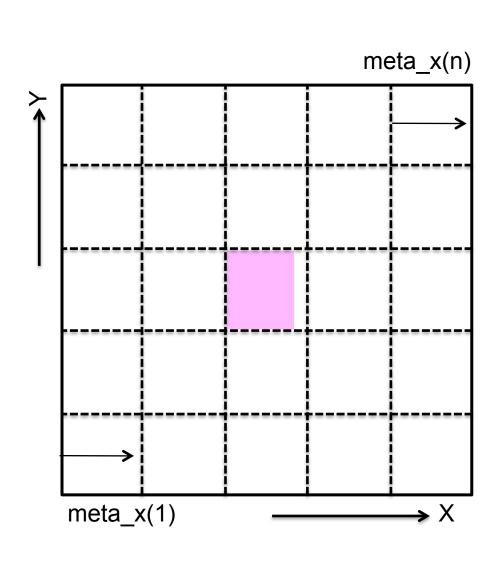

メタデータ管理配列

サブセルの先頭原子番号: allocate(tag(1:5,1:5))

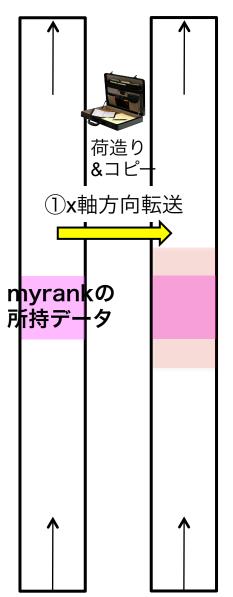
サブセルの格納原子数: allocate(na per cell(1:5,1:5))

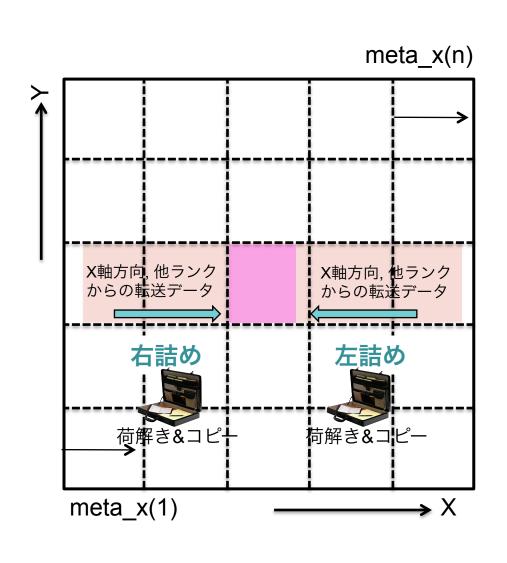
データへのアクセス方法

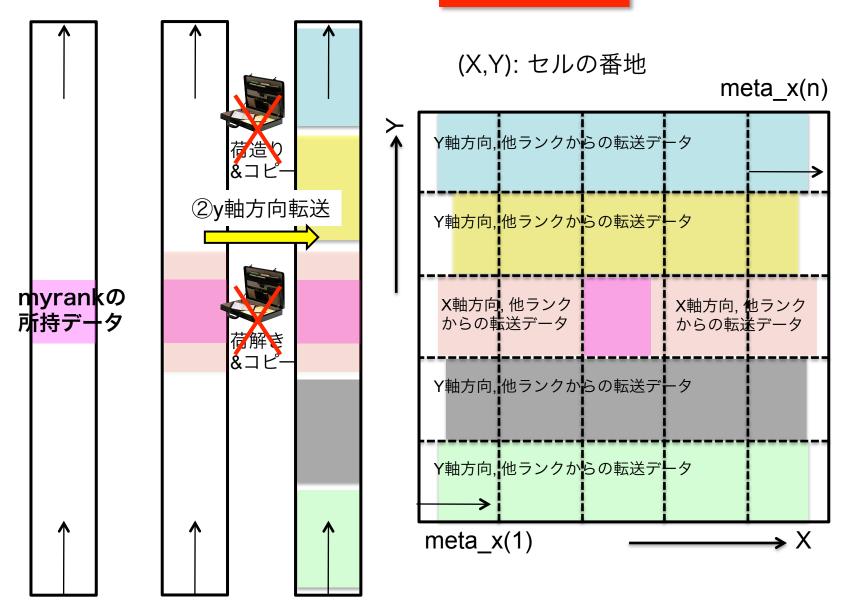
myrank所持データ: tag(3,3) ~ tag(3,3)+na_per_cell(3,3)-1

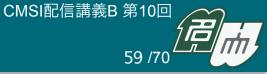

CMSI配信講義B 第10回

MPI 並列化技術: データ構造 [1] 座標

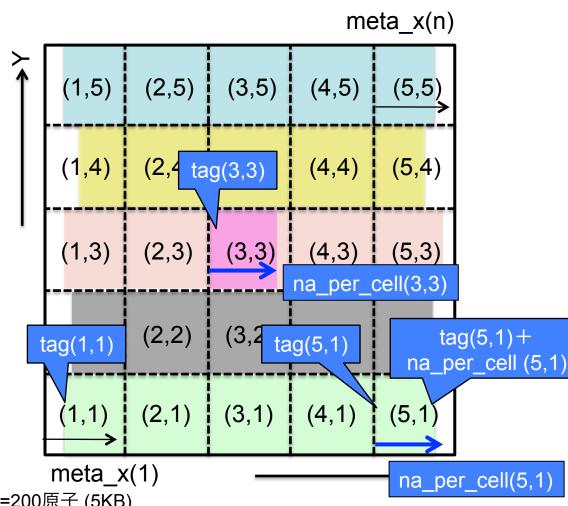

転送された座標データの格納形態 メタデータ構造

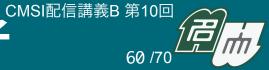



転送された座標データの格納形態 メタデータ構造



転送された座標データの格納形態 メタデータ構造


データへのアクセス方法

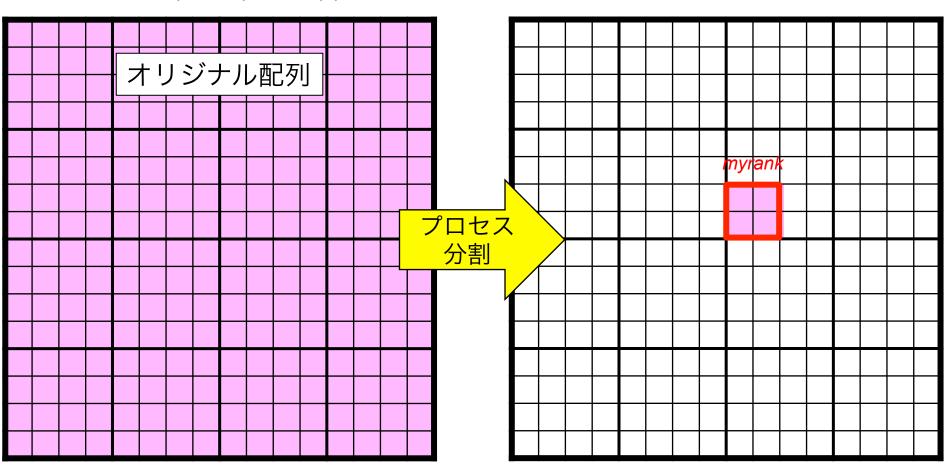

myrank所持データ:

```
tag(3,3) \sim
tag(3,3)+na_per_cell(3,3)-1
```

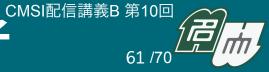
帯の部分のデータ:

```
tag(1,5) ~
tag(5,5)+na_per_cell(5,5)-1
tag(1,4) ~
tag(5,4)+na_per_cell(5,4)-1
tag(1,3) \sim
tag(5,3)+na_per_cell(5,3)-1
tag(1,2) ~
tag(5,2)+na_per_cell(5,2)-1
tag(1,1) \sim
tag(5,1)+na_per_cell(5,1)-1
```


下位階層の多極子

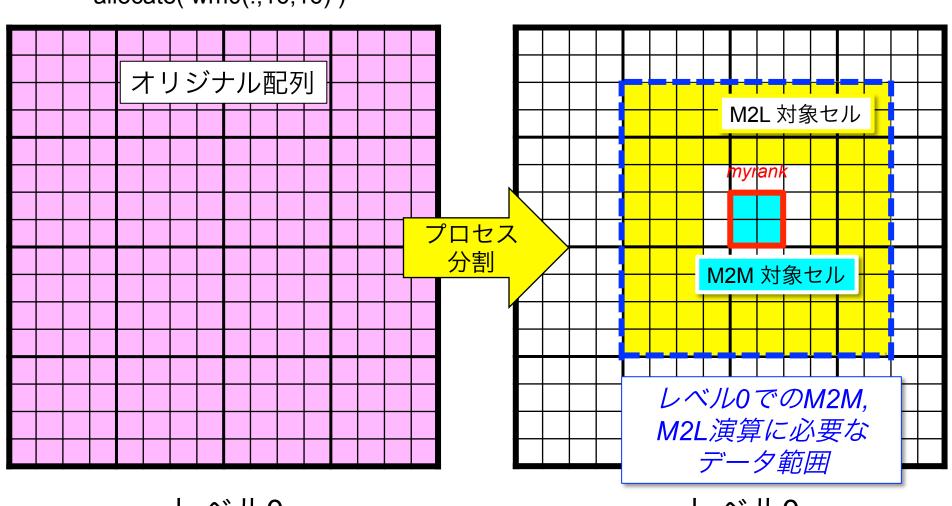

下位の定義:「プロセス分割数 < スーパーセル分割数」

8

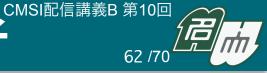

<

16

allocate(wm0(:,16,16))

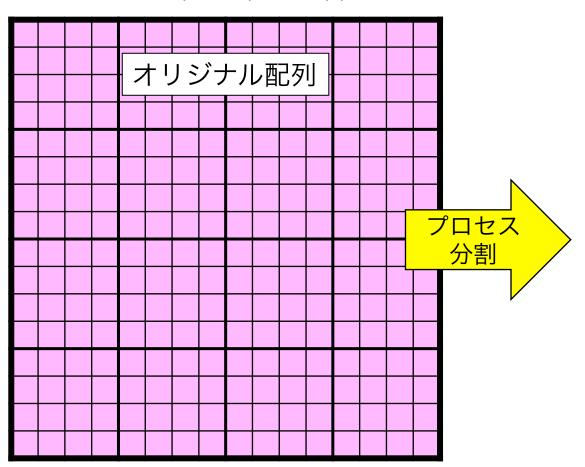


レベル0



下位階層の多極子

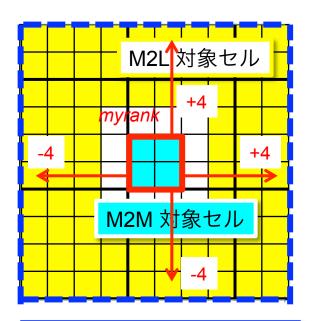
allocate(wm0(:,16,16))



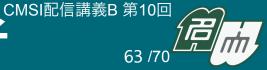
レベル0

下位階層の多極子

allocate(wm0(:,16,16))



レベル0


配列を袖部付きで局所化

allocate(wm_local0(:,10,10))

x方向: 10=4+2+4 y方向: 10=4+2+4

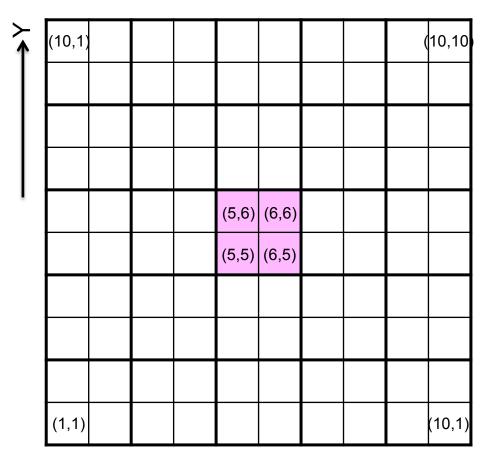
レベル0でのM2M, M2L演算に必要な データ範囲

下位階層の多極子

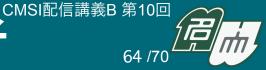
データへのアクセス方法

myrank所持データ:

 $wm_local0(1:(nmax+1)^2,5,5)$


 $wm_local0(1:(nmax+1)^2,6,5)$

 $wm_local0(1:(nmax+1)^2,5,6)$


wm $local0(1:(nmax+1)^2,6,6)$

注)多極子にはもともとスーパーセル の相対配置情報が含まれているため,メ タデータ管理配列は要らない (=メタデ ータ構造ではない)

(X,Y): セルの番地 allocate(wm_local0(:,10,10))

下位階層の多極子

データへのアクセス方法

myrank所持データ:

 $wm_local0(1:(nmax+1)^2,5,5)$

 $wm_local0(1:(nmax+1)^2,6,5)$

 $wm_local0(1:(nmax+1)^2,5,6)$

 $wm_local0(1:(nmax+1)^2,6,6)$

x,y軸方向転送

other ranks所持データ:

wm_local0(1:(nmax+1)²,1:10,9:10) wm_local0(1:(nmax+1)²,1:10,7:8)

wm_local0(1:(nmax+1)²,1:10,5:6)

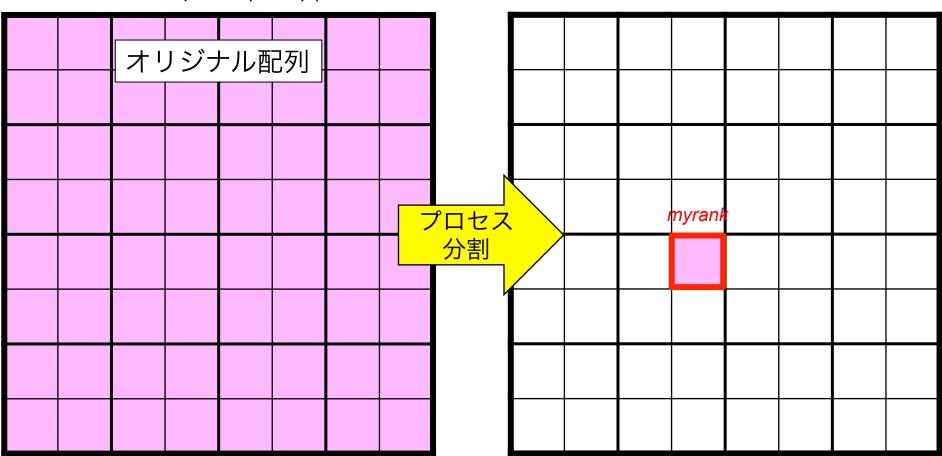
 $wm_local0(1:(nmax+1)^2,1:10,3:4)$

wm $local0(1:(nmax+1)^2,1:10,1:2)$

(X,Y): セルの番地 allocate(wm_local0(:,10,10))

≻	(10,1)	Y軸,	方向, 他	也ラン	クから	の転込	きデー	タ	(10,10
П										
		Y軸,	方向,他	也ラン	クから	の転込	きデー	タ		
П										
		ラン	方向, 他 クから	D	(5,6)	(6,6)		ラン	5向, 他 クから	ர
			データ			(6,5)	./ =>		データ	
		Y軸) ———	5何,作	型フン 	クから	の転i 	をデー	タ 		
		∨軸-	5点4	カラン	クから	の転		タ		
	(4.4)	1 年17	J 14J, 1	5 <i>7 7</i>	7 13.6) V #A J				(10.1)
	(1,1)									(10,1)

全範囲に連続アクセス

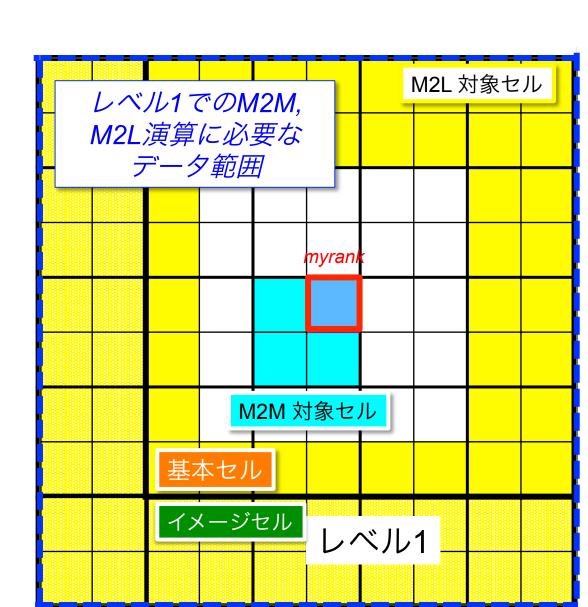


上位階層の多極子

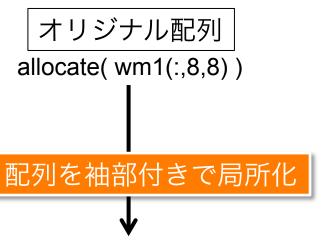
上位の定義:「プロセス分割数≥スーパーセル分割数」

allocate(wm1(:,8,8))

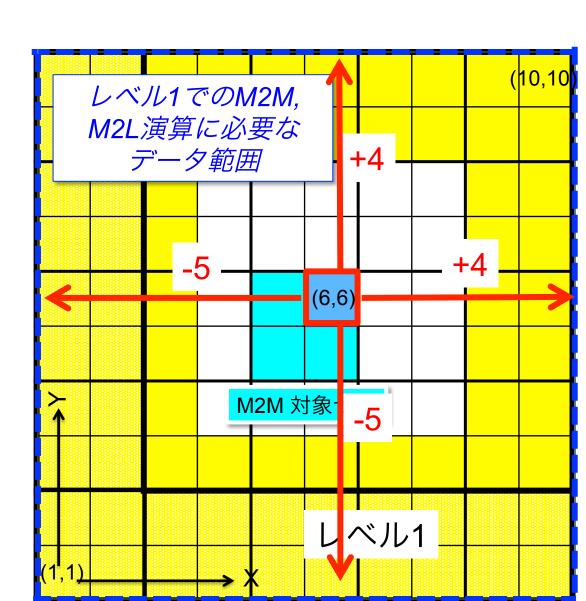
8 = 8


レベル1

上位階層の多極子


オリジナル配列

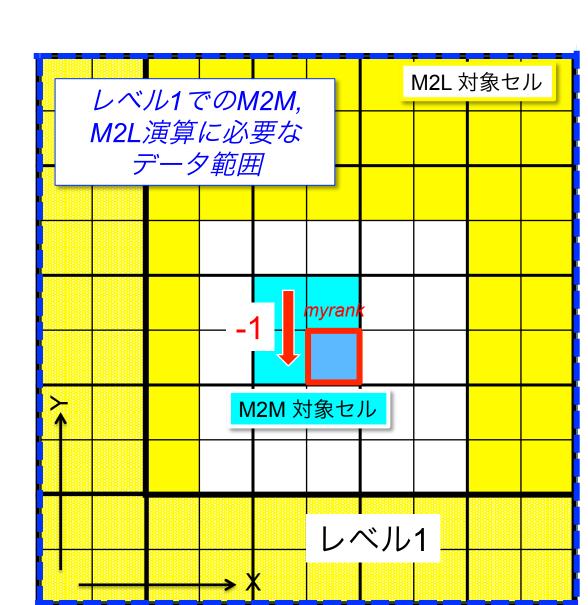
allocate(wm1(:,8,8))


上位階層の多極子

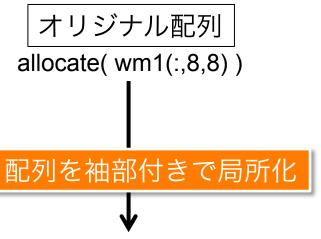
allocate(wm_local1(:,10,10))

x方向: 10=5+1+4 y方向: 10=5+1+4

myrank所持データ: wm_local1(:,6,6)

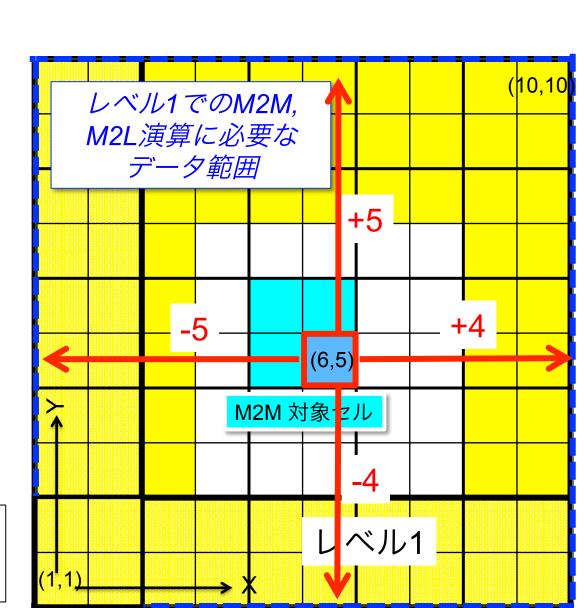


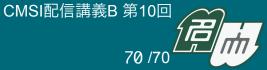
MPI 並列化技術: データ構造 [2] 多極子 CMSI配信講義B 第10回


上位階層の多極子

y 方向に -1 隣の プロセスを考えると,

上位階層の多極子




allocate(wm_local1(:,10,10))

x方向: 10=5+1+4 y方向: 10=4+1+5

myrank所持データ: wm_local1(:,6,5)

上位階層では, 各軸の +, - 袖部の値 (4 or 5)がプロセス位置に依存する点に注意

- ・分子内相互作用と分子間 nonbonded 相互作用の計算, および FMM を用いた Coulomb 相互作用の計算を含む分子動力学計算について, その並列化特性を解説した.
- ・MPI 並列性能および演算性能を向上させるデータ構造について, 座標および多極子 (下位, 上位階層べつ) に解説した.

次回は, このデータ構造を基にした 3 次元トーラスネットワーク 上でのMPI 並列化技術, および OpenMP, SIMD 並列化技術を具 体的に説明する.